

Team H Wrapped

Sam Huelsnitz, Drake Elliott, Molly Dulde, Ruchitha Channapatna, Kayla Robertson, Hez Pendley

2.008 Design and Manufacturing II, Fall 2024

Journey

Our Idea: Spotify yo-yo that plays music when pressed

Most Difficult Aspect: Speaker

- Goal: speaker press fit inside the body.
- Anticipated to be most difficult
- Large speaker required maximum body size possible with the provided mold blanks, needed to adjust the parting line to accommodate size
 - Interfered with pin on CNC HAAS jig
- Extremely thin press fit ring, required precise feeds and speeds on CNC
 - Broken tools

Interference Analysis

$$p = \frac{E\delta}{2R^3} \left[\frac{(r_o^2 - R^2)(R^2 - r_i^2)}{r_o^2 - r_i^2} \right]$$

- Used press fit equation for initial estimate of 0.015" interference
- Due to shrinkage and initial underestimation, the press fit was around 0.005" interference:

- Remachined the cap mold to allow for shrinkage and a larger interference
- New press fit was more successful with drop test and averaged 0.0186" interference.

0.015 0.02 0.025

Interference (in)

DFM Challenges

- Press fit ring for speaker was getting stuck on mold, so 2° draft angle added
 - Mold release needed every 3 cycles
- Due to size of yo-yo, the shoulder bolt had to be 0.55" long, making it difficult to fabricate

 Fabricated custom die to efficiently punch out the correct size of for the thermoformed piece

2.5" diameter

Lessons Learned

- Importance and application of:
 - Process parameter tracking
 - Statistical process control
- Press fit analysis and iteration
 - Draft angle for speaker
 - Shrinkage effect on press-fit
- Problem-solving post assembly: stress and failure modes
 - Large yo-yo size, speaker adds weight
 - 3D printed parts to better distribute load and prevent fracture

